1	Expected Answers	Marks	Additional guidance
(a)(i)	Force/acceleration is proportional to displacement (from equilibrium	B1	Allow force/acceleration is in opposite
	position)		direction to the displacement.
			Allow acc $\propto x$, provided x is identified as the
			displacement for 1 st mark.
	(Resultant force) force/acceleration is (always) towards equilibrium	B1	2 nd mark only scored if -ve sign used and
	position (WTTE, e.g. allow fixed point).		explained.
(a)(ii)	True;	B2	-1 for each error stop at zero
	False		Assume ✓ means true and X means false
	False;		Do not credit blank spaces
	False		
(b)	Measurements:		Allow ruler used to measure initial and
	angle measured with protractor stated or shown on the diagram	B1	subsequent displacement/amplitude if
	- ten wetek /een Cennellete le energie en energie Cennellete der eksemen en		explained.
	stop-watch/ms timer/data-logger to measure time stated or shown on	54	
	the diagram	BI	
	Conclusion , compare pariada for different angles stated/implied		
	OP plot period against angle	D1	Allow table of results with correct column
		Ы	headings is a st least angle and period
	major difficulty:		neadings i.e. at least angle and period
	angle of swing decreases during the timing of the swing		
	solution: e a	M1	
	measure time for $\frac{1}{4}$ % or 1 swing accurately (using electronic	IVI I	
	timer/datalogger)	A1	Do not allow 'time is short so measure nT
	OR		and divide by n to reduce (%) error'.(WTTE)
	use data logger with motion sensor to record many swings and analyse		
	how the period changes over time		
	OR		
	video the motion with onscreen timer and analyse		
	Total	9	

Question	Expected Answers	Marks	Additional guidance
2 (a)	Acceleration is (directly) proportional to the	B1	Allow "fixed point" or "point"
	displacement/distance (from the equilibrium position/central pt)		Allow acc. is in opposite direction to
		B1	displacement (WTTE)
	Acceleration is always directed towards the equilibrium		If formula is used: allow a ∞ -x for 1 st mark
	position/central point.		and 2 nd mark if x is stated as displacement.
(b)	Curve symmetrical about energy axis with maximum at 18	B1	Ignore points where graphs cross
	zero at +0.04 and – 0.04	B1	Give bod if not labelled K but correct
(b) (Horizontal straight line passing 18	B1	Give bod if not labelled T but correct
(C)	0.04 m	B1	
(c) ($\frac{1}{2}m(v_{max})^2 = 0.018$	C1	Many will use 18 instead of 0.018. This
	$v_{max} = \sqrt{(2x0.018/0.12)} = 0.55 \text{ ms}^{-1} (0.548)$	A1	results in 17.3 and scores 1 mark.
			Allow ecf for cand's value of max KE.
			Do not allow 0.54 for second mark.
(c) (i	correct use of $v_{max} = 2\pi fA$	C1	Allow ecf for cand's values from (c)(i)
			and/or (c) (ii). E.g for 17.3 f = 68.8 Hz. This
	$f = (0.55/0.04x2\pi) = 2.2$ (or 2.19 or 2.18)Hz	A1	scores 2 marks e.c.f.
			Do not allow 2.1
(d)	Award first mark for stating the 'driver' of the oscillations	B1	No marks to be awarded for a bare
	and the second mark for stating what is 'driven' i.e. oscillating	B1	statement of the example e.g MRI.
	useful applications: e.g.		
	Cooking: micro waves cause water molecules to resonate		Please allow any other valid examples.
	Woodwind: reed causes air column to resonate		
	Brass: lips cause air column to resonate		
	MRI: radio waves (in a magnetic field) cause nuclei/proton to		
	resonate		
	Radios: radio waves cause electrons/current to resonate		
	Person on swing: intermittent pushes cause swing to		
	resonate		
	problem:	B1	
	Bridges: wind/walkers causes bridge to resonate	B1	
	Vehicles: engine vibrations cause panels/mirrors to		
	resonate Earthquakes: ground vibrating causes buildings to		
	resonate		
	Total	14	

Question		on	Answer	Marks	Guidance
3	(a)		Obtain a set of readings for: mass <i>m</i> , time period AND calculate frequency using $\underline{f} = \underline{1/T}$. Plot graphs of <i>f</i> against $1/m$ AND <i>f</i> against $1/\sqrt{m}$ The graph which is a straight line through the origin provides the correct relationship Reference to one method of improving reliability eg counting more than 5 oscillations to find <i>T</i> or <i>f</i> taking repeat measurements of <i>T</i> or <i>f</i> (and average values) time oscillations from equilibrium position	B1 B1 B1 B1	Not number of oscillations in a set time Allow: product method using two or more points (B1) Select the relation which gives a constant product (B1 Allow: plot In <i>f</i> against In <i>m</i> (B1) gradient= -1 then $f \propto 1/m$ or gradient= -0.5 then $f \propto 1/\sqrt{m}$ (B1)
	(b)	(i) (ii)	$v_{\text{max}} = 2 \pi f A = 2 \pi \left(\frac{1}{1.2}\right) \times 36 \times 10^{-3}$ $v_{\text{max}} = \frac{3\pi}{50} (= 0.188)$ $KE_{\text{max}} = \frac{1}{2} \times 0.4 \times \left(\frac{3\pi}{50}\right)^{2}$ $KE_{\text{max}} = 7.1 \times 10^{-3} \text{(J)}$	C1 C1 A1	Note: mark is for substitution
		(11)	$a_{\text{max}} = (2 \pi f)^2 A = \left[2 \pi \left(\frac{1}{1.2} \right) \right]^2 \times 36 \times 10^{-3}$ $a_{\text{max}} = 0.99 \text{ (ms}^{-2})$	C1 A1	Note: mark is for correct substitution

Question	Answer	Marks	Guidance
(c)	Reference to : kinetic energy (of masses and spring), gravitational potential energy (of mass and spring), elastic (potential) energy / strain energy of spring	B1	Note: mark to be awarded only if all 3 forms are quoted Note: potential must be spelled correctly throughout to score this mark
	KE: <u>zero</u> (at lowest point), increasing to max at equilibrium point, decreasing to <u>zero</u> (at highest point)	B1	
	GPE: increases (as masses rise from lowest to highest point) (clearly worded ora)(AW)	B1	
	strain / elastic energy: decreases (as masses rise from lowest to highest point) (clearly worded ora) (AW)		
	Total	13	

Question		on	Answer	Marks	Guidance
4	(a)	(i)	amplitude = $0.4(0)$ (m) and period = $5.(0)$ (s)	B1	Note: Both values are required.
					Allow 1 sf values
		(ii)	$\omega = (2\pi f) = 2\pi / \tau$		Possible ecf from a(i) for period
			$\omega = 2\pi / 5.0 = (2\pi \times 0.2)$	C1	Mark is for correct substitution
			$\omega = 1.3 \text{ (rad s}^{-1}\text{)}$	A1	
	(b)	(i)	V clearly marked at any point where graph crosses time axis	B1	
		(ii)	A clearly marked at any point where graph crosses time axis	B1	
		(iii)	P clearly marked at any point where graph crosses time axis	B1	
	(c)	(i)	Selecting from data sheet $a = -(2\pi f)^2 x$	C1	Allow : $a = (-) \omega^2 x$
					Note: Ignore sign of a
			$a_{\text{max}} = (-)(2\pi \times 2.4 \times 10^3)^2 \times 1.8 \times 10^{-3}$	C1	
			$a_{\rm max} = 4.1 \ {\rm x} \ 10^5 \ {\rm (m \ s^{-2})}$	A1	Allow : 2 marks for 4.1 x 10° , n \neq 5 [POT error]
		(ii)	Work done = mean force x distance moved		
			For $\frac{1}{2}$ oscillation distance moved = 1.8 mm,		
			Work done = $0.25 \times 1.8 \times 10^{-3}$ (= 4.5×10^{-4} J)	C1	
			Time taken $\Delta t = \frac{1}{4}$ T = $\frac{1}{4}$ (1/2.4x10 ³) = 1.04 x 10 ⁻⁴	C1	
			Power – work done / Δt = 0.25 x 1.8 x 10 ⁻³ / 1.04 x 10 ⁻⁴ = 4.3 W		Allow: other correct values of distance moved and
					compatible time taken. Eq 7.2 (mm) and 4.17 x 10^{-4} (s) for 1 complete oscillation
			Power = 4.3 (W)		
				A1	
			Total	12	